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Principle Conditioning

Olga Nánásiová1

The definition of the conditional probability is very important in the theory of the
probability. This definition is based on the fact, that random events can be simultane-
ously measurable. This paper deals with the problem of conditioning for such random
events, which are not simultaneously measurable. This paper defines conditional states
as convex combination of special states.

KEY WORDS: quantum logic; orthomodeular lattice; state; conditional probability;
independence.

1. INTRODUCTION

The classical Kolmogorovian model for random events was developed only
for such random events, which are simultaneouly measurable (in another words,
which are compatible). The basic algebraic structure, which is used as a model for
noncompatible random events is an orthomodular lattice (OML), or an orhtomod-
ular σ -lattice (σ -OML). In this paper we determine a conditional state (analogical
notion of conditional probability) as a convex combination of “orthogonal states”
on an OML.

In the classical theory we assume that random events can be interpreted as
a set of outcomes of experiments. A probability space is a triple (Kolmogoroff,
1933; Renyi, 1947, 1955) (�, B, P), where � is a set of all elementary random
events, B is a σ -algebra of subset of � and P is a probability measure. In the
noncommutative approach we have a couple (L , M), where L is a σ -OML and M
is a set of states on it.

Let (�i , Fi ) for i = 1, . . . , n be measurable spaces. Let � = �1 × . . . ×
�n . If ω = (ω1, . . . , ωn), then πi (ω) = ωi . Then L = {π−1

i (A); A ∈ F , i =
1, . . . , n}, where for example π−1

1 (A) = (A, �, . . . , �), for A ∈ F1. Then L can
be organized as an OML by the following way:

(1) π−1
i (�) := 1;

1 Department of Mathematics and Descriptive Geometry, Faculta of Civil Engineering Slovak Technical
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(2) π−1
i (A) ∨ π−1

i (B) := π−1
i (A ∪ B) and π−1

i (A) ∨ π−1
j (B) := 1, for i �=

j ;
(3) π−1

i (∅) := 0;
(4) π−1

i (A) ⊥ π−1
j (B) if and only if i = j and A ∩ B = ∅.

Let (�i , Fi , Pi ) for i = 1, . . . , n be some probability spaces and L be an OML
defined as before. A map

m : L → [0, 1],

such that

m
(
π−1

i (A)
) = Pi (A) for each A ∈ Fi

is a state on L .
Well known examples of OMLs include Boolean algebras and the orthogonal

projections on a Hilbert space.

Definition 1.1: (Varadarajan, 1968). Let L be a nonempty set endowed with a
partial order ≤ with the largest element (1) and the smallest element (0). Let there
be defined the operations of supremum (∨), infimum (∧) (the lattice operations )
and a map ⊥: L → L with the following properties:

(i) For any {an}n∈A ∈ L , where A ⊂ N is finite (A is infinite)∨
n∈A

an ,
∧
n∈A

an ∈ L .

(ii) For any a ∈ L (a⊥)⊥ = a.
(iii) If a ∈ L , then a ∨ a⊥ = 1.
(iv) If a, b ∈ L such that a ≤ b, then b⊥ ≤ a⊥.
(v) If a, b ∈ L such that a ≤ b then b = a ∨ (a⊥ ∧ b) (orthomodular law).

Then (L , 0, 1, ∨, ∧, ⊥) is called an orthomodular lattice (briefly L is an OML)
(a σ -OML).

Let L be an OML (a σ -OML). Then the elements a, b ∈ L will be called:

(1) orthogonal (a⊥b) iff a ≤ b⊥;
(2) compatible (a ↔ b) iff there exist mutually orthogonal elements a1, b1,

c ∈ L such that

a = a1 ∨ c and b = b1 ∨ c.

If ai ∈ L for any i ∈ A and b ∈ L is such, that b ↔ ai for all i , then b ↔ ∨
i∈A ai

and

b ∧
∨
i∈A

ai =
∨
i∈A

ai ∧ b



Principle Conditioning 1759

(Dvurec̆enskij and Pulmannová, 2000).

Definition 1.2: (Varadarajan, 1968) A map m : L → R such that

(i) m(0) = 0 and m(1) = 1,
(ii) if a⊥b then m(a ∨ b) = m(a) + m(b),

is called a state on L . If L is a σ -OML and m is a σ -additive function then m will
be called a σ -state.

2. A CONDITIONAL STATE ON AN OML

Definition 2.1. Let L be an OML. A subset L0 ⊂ L − {0} is called a conditional
system (CS) (a σ -CS ) if the following conditions are fulfilled:

(1) If a, b ∈ L0, then a ∨ b ∈ L0. (If an ∈ L0, for n = 1, 2, . . ., then
∨

n an ∈
L0.)

(2) If a, b ∈ L0 and a < b, then a⊥ ∧ b ∈ L0.

Definition 2.2. Let L be an OML and L0 be a CS (a σ -CS). Let

f : L × L0 → [0, 1].

If the function f fulfils the following conditions:

(C1) for each a ∈ L0 f (., a) is a state on L (a σ -state);
(C2) for each a ∈ L0 f (a, a) = 1;
(C3) if {an}n∈A ∈ L0, where A ⊂ N , A has finite cardinality (A can be

infinite), and an are mutually orthogonal, then for each b ∈ L

f (b,
∨
n∈A

an) =
∑
n∈A

f (an ,
∨
n∈A

an) f (b, an);

then f is called a conditional state (a σ -conditional state).
It is clear, that if L is a σ -OML, {ai }i∈A, where A ⊂ N , such that ai ⊥ a j , for

i �= j , than we can rewrite the Proposition 1.1 for a σ -conditional state. Moreover
for any {ai }i∈A there exists many conditional states (or σ -conditional states). On the
other hand, because a measurable space can be described as σ -OML (Varadarajan,
1968), then this representation is fulfilled for a probability space, too.

It is clear, that if there exists a probability measure µ on the measurable space
(�, B) , then the conditional probability f exists on B × B0 and

f (A, B) = µ(A ∩ B)

µ(B)
,

where B0 ⊂ {E ∈ B; µ(E) �= 0}. The system (�, B, B0, f ) is called the con-
dional probabilty system (CPS).
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Let P be some collection of probability measures on (�, B). It is a question,
when this collection P can be organized as a system of conditional probabilities.
On the classical theory of probability the following theorems are fulfiled:

Proposition 2.1. Let (�, B, B0, f ) be a CPS. Let {Bi }i∈A ∈ B0, A ⊂ N and let
there exist B ∈ B0, such that f (B, Bi ) = 1 and f (Bi , B) > 0 for any i ∈ A. Then
for any C ∈ B

f (C, B) =
∑
i∈A

f (C, Bi ) f (Bi , B)

iff

f
( ⋃

i∈A
Bi , B

) =
∑
i∈A

f (Bi , B) = 1.

Proposition 2.2. Let (�, B, B0, f ) be a CPS. Let {Bi }i∈A ∈ B0, A ⊂ N and let
there exist B ∈ B0, such that f (B, Bi ) = 1 and f (Bi , B) > 0 for any i ∈ A. Then
for any C ∈ B

f (C, B) =
∑
i∈A

f (C, Bi ) f (Bi , B),

then for any i �= j f (Bi , B j ) = 0.

From this aproach follows, that the definition of a conditional state (a σ -
conditional state) on an OML (a σ -OML) has been defined correctly. More details
about the classical aproach to the conditional probability we can find for example
in (Riec̆can and Neubrun, 1997).

Proposition 2.3. Let L be an OML. Let {ai }n
i=1 ∈ L, n ∈ N where ai ⊥ a j for

i �= j . Let for any i there exists a state αi , such that αi (ai ) = 1. Then there exists
a CS such that for any k = (k1, k2, . . . , kn), where ki ∈ [0; 1] for i ∈ {1, 2, . . . , n}
with the property

∑n
i=1 ki = 1, there exists a conditional state

fk : L × L0 → [0; 1],

and

(1) for any i and each d ∈ L fk(d , ai ) = αi (d);
(2) for each ai

fk

(
ai ,

n∨
i=1

ai

)
= ki ;
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Proof: Let

L0 = {c ∈ L; c =
∨
i∈A

ai∈A, for each A ⊂ {1, 2, . . . , n}}.

Then it is clear that L0 is a CS and so L0 exists in L .
From the assumption, we have the set of triples {(ai , αi , ki ), i = 1, . . . , n}, and

from the properties of a CS follows that for each c ∈ L0 {i1, . . . , is} ⊂ {1, . . . , n}
such that

c =
s∨

j=1

ai j and αi j (ai j ) = 1.

Let as denote K(c) = ∑s
j=1 ki j .

Let fk : L × L0 → [0, 1] such that for each d ∈ L and c ∈ L0

fk(d , c) = 1

K(c)

s∑
j=1

ki j αi j (d).

Now we show, that fk is the conditional state.
(C1) Let c ∈ L0. Then

fk(1, c) = 1

K(c)

s∑
j=1

ki j αi j (1) = 1

K(c)

∑
j

ki j = K(c)

K(c)
= 1

and

fk(0, c) = 1

K(c)

∑
j

ki j αi j (0) = 1

K(c)

∑
j

ki j .0 = 0

Let d, b ∈ L , such that d ⊥ b. Then

fk(d ∨ b, c) = 1

K(c)

∑
j

ki j αi j (d ∨ b) = 1

K(c)

( ∑
j

ki j αi j (d) +
∑

j

ki j αi j (b)

)

= 1

K (c)

∑
j

ki j αi j (d) + 1

K (c)

∑
j

ki j αi j (b) = f (d, c) + f (b, c)

So fk is a state on L .
(C2) It is easy to see, that for each c ∈ L0

fk(c, c) = 1.

(C3) It is enough to show it for two orthogonal elements from L0. Let c1, c2

be such elements from L0, that

c1 =
n1∨

i=1

ai and c2 =
n2∨

i=n1+1

ai .
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Then

fk(c j , c1 ∨ j c2) = K(c j )

K(c1 ∨ c2)

and

fk(d , c1 ∨ c2) = 1

K(c1 ∨ c2)

n2∑
j=1

k jα j (d).

From it follows
n2∑
j

fk(c j , c1 ∨ c2) fk(d , c j )

= K(c1)

K(c1 ∨ c2)

1

K(c1)

n1∑
i=1

kiαi (d)) + K(c2)

K(c1 ∨ c2)

1

K(c2)

n2∑
i=n1+1

kiαi (d)

= 1

K(c1 ∨ c2)

n2∑
i=1

kiαi (d) = fk(d , c1 ∨ c2).

So fk is the conditional state.
Let a = ∨n

i=1 ai . Then

f (., a) = 1

K(a)

∑
i

kiαi (.) =
∑

i

kiαi (.),

and then for each i = 1, . . . , n

f (ai , a) = ki .

From it follows, that for each d ∈ L and ai i = 1, . . . , n

fk(d , ai ) = 1

K(ai )
kiαi (d) = αi (d).

It is clear that fk : L × L0 → [0, 1] is the conditional state with the properties (1)
and (2). �

3. DEPENDENCE AND INDEPENDENCE

Definition 3.1. Let L be an OML and f be a conditional state. Let b ∈ L , a, c ∈ L0

such that f (c, a) = 1. Then b is independent of a, with respect to the state f (., c)
(b � f (.,c) a) iff f (b, c) = f (b, a).

The classical definition of independence in a probability space (�, B, P) is
a special case of this definition, because

P(A|B) = P(A|�) iff P(A ∩ B|�) = P(A|�)P(B|�).
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Let L is an OML. Let a1, . . . , an ∈ L − {0}, such that ai ⊥ a j , for i �= j . Let αi

i = 1, . . . , n be such state, αi (a j ) = δi, j , the Kronecker δi, j which = 1 when i = j
and 0 otherwice. Then, for each ki ∈ [0, 1] (i = 1, . . . , n) such that

n∑
i=1

ki = 1 a map µ :=
n∑

i=1

kiαi = fµ
(
.,

n∨
i=1

ai

)

is a state and we say that αi is a conditional state with the condition ai (αi =
fµ(., ai )) and ki = µ(ai ). Then for b ∈ L

b �µ ai iff αi (b) = µ(b).

Proposition 3.1. Let L is an OML. Let a1, . . . , an ∈ L − {0}, such that ai ⊥ a j ,
for i �= j . Let αi i = 1, . . . , n be a state such that αi (a j ) = δi, j . Let ki ∈ [0, 1]
(i=1,. . . ,n), such that

n∑
i=1

ki = 1 and µ =
n∑

i=1

kiαi .

Then

(1) b �µ ai , iff b �µ ∨ j �=i a j ;
(2) b �µ ai , iff b⊥ �µ ai .

Proof:

(1) It is enough to show it for i = 1. Let b �µ a1, then from the definition
follows, that

α1(b) = µ(b)

and so

µ(b) = fµ
(

b,
n∨

i=1

ai

)
= fµ

(
a1,

n∨
i=1

a j

)
fµ(b, a1))

+ fµ
( n∨

j=2

a j ,
n∨

i=1

ai

)
fµ

(
b,

n∨
j=2

a j

)

α1(b) = k1α1(b) + fµ
( n∨

j=2

a j ,
n∨

i=1

ai

)
fµ

(
b,

n∨
j=2

a j

)

(1 − k1)α1(b) = fµ
( n∨

j=2

a j ,
n∨

i=1

ai

)
fµ

(
b,

n∨
j=2

a j

)
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fµ
( n∨

j=2

a j ,
n∨

i=1

ai

)
α1(b) = fµ(

n∨
j=2

a j ,
n∨

i=1

ai ) fµ
(

b,
n∨

j=2

a j

)

α1(b) = fµ(b, a1) = fµ
(

b,
n∨

j=2

a j

)
.

From it follows that b � fm u ∨ j �=i a j . The converse implication can be
shown analogously.

(2) If b �µ ai , then

µ(b⊥) = 1 − µ(b) = 1 − αi (b) = αi (b
⊥)

and so b⊥ �µ ai . The converse implication can be shown analogously.

�

Proposition 3.2. Let L be an OML, L0 be a CS and f : L × L0 → [0, 1] be a
conditional state.

(1) Let a⊥, a, c ∈ L0, b ∈ L and f (c, a) = f (c, a⊥) = 1. Then b � f (.,c) a
iff b � f (.,c) a⊥.

(2) Let a, c ∈ L0, b ∈ L and f (c, a) = 1. Then b � f (.,c) a iff b⊥ � f (.,c) a.
(3) Let a, c, b ∈ L0, b ↔ a and f (c, a) = f (c, b) = 1, f (a, b) �= 0,

f (b, a) �= 0. Then b � f (.,c) a iff a � f (.,c) b.
(4) Let b, c, d ∈ L0, b ⊥ d, a ∈ L and f (c, b) = f (c, d) = 1. Then a � f (.,c)

b, a � f (.,c) d then a � f (.,c) b ∨ d

Proof:

(1) From the definition of a conditional state follows, that for each x ∈ L

f (x , c) = f (a, c) f (x , a) + f (a⊥, c) f (x , a⊥). (1)

Let b � f (.,c) a. It means, that f (b, c) = f (b, a). If we put x = b, then
we get

f (b, a) = f (b, c) = f (a, c) f (b, a) + f (a⊥, c) f (b, a⊥).

thus

(1 − f (a, c)) f (b, a) = f (a⊥, c) f (b, a⊥),

but 1 − f (a, c) = f (a⊥, c). Then

f (a⊥, c) f (b, a) = f (a⊥, c) f (b, a⊥)

and so

f (b, a) = f (b, a⊥) = f (b, c).
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Thus b � f (.,c) a. The converse implication can be shown analogously.
(2) Let b � f (.,c) a. Then f (b, c) = f (b, a), and so 1 − f (b, c) = 1 −

f (b, a). Thus f (b⊥, c) = f (b⊥, a). The converse implication can be
shown analogously.

(3) By (1) with x = a ∧ b, we have

f (b, a) = f (a ∧ b, a). (2)

On the other hand, by (1) with b in place a, we have

f (a, b) = f (a ∧ b, b).

From the definition of a conditional state, we can write

f (x , c) = f (a, c) f (x , a) + f (a⊥, c) f (x , a⊥),

for each x ∈ L . If we put x = a ∧ b, then

f (a ∧ b, c) = f (a, c) f (a ∧ b, a) = f (a, c) f (b, a).

On the other hand

f (x , c) = f (b, c) f (x , b) + f (b⊥, c) f (x , b⊥),

and we get

f (a ∧ b, c) = f (b, c) f (a ∧ b, b) = f (b, c) f (a, b).

But b � f (.,c) a, it means f (b, c) = f (b, a). Then

f (a ∧ b, c) = f (b, c) f (a, b) = f (b, a) f (a, b)

analogously

f (a ∧ b, c) = f (a, c) f (b, a),

and, by (2) we can write

f (b, a) f (a, b) = f (a, c) f (b, a),

so that, since f (a, b) �= 0

f (a, b) = f (a, c)

and a � f (.,c) b. The converse implication can be shown analogously.
(4) Let b ⊥ d, f (c, b) = f (c, d) = 1. Then

f (c, b ∨ d) = f (d , d ∨ b) f (c, d) + f (b, d ∨ b) f (c, b)

= f (d , d ∨ b) + f (b, d ∨ b)

= f (b ∨ d , b ∨ d) = 1.
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If a � f (.,c) b, a � f (.,c) d , then f (a, b) = f (a, c) = f (a, d) and

f (a, b ∨ d) = f (d , d ∨ b) f (a, d) + f (b, d ∨ b) f (a, b)

= f (d , d ∨ b) f (a, c) + f (b, d ∨ b) f (a, c)

= f (b ∨ d , b ∨ d) f (a, c) = f (a, c).

It means a � f (.,c) b ∨ d . �

Example. Let L = {a, a⊥, b, b⊥, 0, 1} and L0 = L − {0}. Let α, α′ be such states
on L , that α(a) = α′(a⊥) = 1 and let k = (0.1, 0.9). Then we can define a condi-
tional state by the following way:

fk(d , a) = α(d) and fk(d , a⊥) = α′(d)

fk(d , 1) = 0.1α(d) + 0.9α′(d)

= fk(b, 1) fk(d , b) + fk(b⊥, 1) fk(d, b⊥)

for each d ∈ L . Let α(b) = 0.2 and α′(b) = 0.3. Then fk(b, 1) = 0.29 and we can
write

fk(d , 1) = 0.29 fk(d , b) + 0.71 fk(d, b⊥).

If we put d = a, then

fk(a, b) ∈
[

0,
10

29

]
and fk(a, b⊥) ∈

[
0,

10

71

]
.

Therefore

0.29 = fk(b, 1) �= fk(b, a) = 0.2,

then

b is not independent of a with respect to the state fk(., 1).

If fk(a, 1) = 0.1, then fk(a, 1) = fk(a, b) and so

a is independent of b with respect to the state fk(., 1) (a � fk(.,1) b).

From the above mentioned it follows that the Boolean algebra as a measurable
system B1 = {0, 1, a, a⊥} is independent of the Boolean algebra as a measurable
system B2 = {0, 1, b, b⊥} with respect to the conditional state fk and B2 is depen-
dent on the B1 with respect to the conditional state fk. It may be that this approach
to the conditional state can help describe some problems of causality in the theory
of probability.
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